Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fungal Syst Evol ; 11: 1-10, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37469937

RESUMEN

A nectrioid fungus forming a pinkish colony with mainly solitary phialides producing ellipsoid, aseptate conidia in mucoid packets was isolated from Dirinaria applanata. Our taxonomic study based on morphology and phylogenetic analysis using ITS rDNA sequences revealed that the isolates represented a member of the genus Cylindromonium. Based on further morphological examination, nucleotide sequence comparison, and phylogenetic analysis based on LSU rDNA, tef1, and rpb2 in addition to the phylogenetic analysis using the ITS rDNA sequences, the fungus from Dirinaria represents a new species, which is described here as Cylindromonium dirinariae sp. nov. Furthermore, inoculation experiments revealed that this species can also produce perithecia when inoculated on the host lichen in laboratory environments. Citation: Ohmaki A, Okane I, Crous PW, Verkley GJM (2023). Cylindromonium dirinariae sp. nov. (Ascomycota, Hypocreales), a new nectrioid lichenicolous species on Dirinaria applanata in Japan. Fungal Systematics and Evolution 11: 1-10. doi: 10.3114/fuse.2023.11.01.

2.
Fungal Syst Evol ; 11: 109-156, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38545457

RESUMEN

Three new genera, six new species, three combinations, six epitypes, and 25 interesting new host and / or geographical records are introduced in this study. New genera: Neoleptodontidium (based on Neoleptodontidium aquaticum), and Nothoramularia (based on Nothoramularia ragnhildianicola). New species: Acremonium aquaticum (from cooling pad water, USA, Cladophialophora laricicola (on dead wood of Larix sp., Netherlands), Cyphellophora neerlandica (on lichen on brick wall, Netherlands), Geonectria muralis (on moss growing on a wall, Netherlands), Harposporium illinoisense (from rockwool, USA), and Neoleptodontidium aquaticum (from hydroponic water, USA). New combinations: Cyphellophora deltoidea (based on Anthopsis deltoidea), Neoleptodontidium aciculare (based on Leptodontidium aciculare), and Nothoramularia ragnhildianicola (based on Ramularia ragnhildianicola). Epitypes: Cephaliophora tropica (from water, USA), Miricatena prunicola (on leaves of Prunus serotina, Netherlands), Nothoramularia ragnhildianicola (on Ragnhildiana ferruginea, parasitic on Artemisia vulgaris, Germany), Phyllosticta multicorniculata (on needles of Abietis balsamea, Canada), Thyronectria caraganae (on twigs of Caragana arborescens, Ukraine), and Trichosphaeria pilosa (on decayed Salix branch, Netherlands). Furthermore, the higher order phylogeny of three genera regarded as incertae sedis is resolved, namely Cephaliophora (Ascodesmidaceae, Pezizales), Miricatena (Helotiales, Leotiomycetes), and Trichosphaeria (Trichosphaeriaceae, Trichosphaeriales), with Trichosphaeriaceae being an older name for Plectosphaerellaceae. Citation: Crous PW, Akulov A, Balashov S, Boers J, Braun U, Castillo J, Delgado MA, Denman S, Erhard A, Gusella G, Jurjevic Z, Kruse J, Malloch DW, Osieck ER, Polizzi G, Schumacher RK, Slootweg E, Starink-Willemse M, van Iperen AL, Verkley GJM, Groenewald JZ (2023). New and Interesting Fungi. 6. Fungal Systematics and Evolution 11: 109-156. doi: 10.3114/fuse.2023.11.09.

3.
Stud Mycol ; 92: 135-154, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29955203

RESUMEN

Species identification lies at the heart of biodiversity studies that has in recent years favoured DNA-based approaches. Microbial Biological Resource Centres are a rich source for diverse and high-quality reference materials in microbiology, and yet the strains preserved in these biobanks have been exploited only on a limited scale to generate DNA barcodes. As part of a project funded in the Netherlands to barcode specimens of major national biobanks, sequences of two nuclear ribosomal genetic markers, the Internal Transcribed Spaces and 5.8S gene (ITS) and the D1/D2 domain of the 26S Large Subunit (LSU), were generated as DNA barcode data for ca. 100 000 fungal strains originally assigned to ca. 17 000 species in the CBS fungal biobank maintained at the Westerdijk Fungal Biodiversity Institute, Utrecht. Using more than 24 000 DNA barcode sequences of 12 000 ex-type and manually validated filamentous fungal strains of 7 300 accepted species, the optimal identity thresholds to discriminate filamentous fungal species were predicted as 99.6 % for ITS and 99.8 % for LSU. We showed that 17 % and 18 % of the species could not be discriminated by the ITS and LSU genetic markers, respectively. Among them, ∼8 % were indistinguishable using both genetic markers. ITS has been shown to outperform LSU in filamentous fungal species discrimination with a probability of correct identification of 82 % vs. 77.6 %, and a clustering quality value of 84 % vs. 77.7 %. At higher taxonomic classifications, LSU has been shown to have a better discriminatory power than ITS. With a clustering quality value of 80 %, LSU outperformed ITS in identifying filamentous fungi at the ordinal level. At the generic level, the clustering quality values produced by both genetic markers were low, indicating the necessity for taxonomic revisions at genus level and, likely, for applying more conserved genetic markers or even whole genomes. The taxonomic thresholds predicted for filamentous fungal identification at the genus, family, order and class levels were 94.3 %, 88.5 %, 81.2 % and 80.9 % based on ITS barcodes, and 98.2 %, 96.2 %, 94.7 % and 92.7 % based on LSU barcodes. The DNA barcodes used in this study have been deposited to GenBank and will also be publicly available at the Westerdijk Institute's website as reference sequences for fungal identification, marking an unprecedented data release event in global fungal barcoding efforts to date.

4.
Persoonia ; 35: 242-63, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26823635

RESUMEN

The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1-D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial ß -tubulin II (TUB2); iv) γ-actin (ACT); v) translation elongation factor 1-α (TEF1α); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5-6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1α. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1α, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail.

5.
Persoonia ; 32: 25-51, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25264382

RESUMEN

Based on analyses of concatenated internal transcribed spacer regions of the nrDNA operon (ITS), large subunit rDNA (LSU), γ-actin and ß-tubulin gene sequences the taxonomy of coniothyrium-like fungi belonging in the family Montagnulaceae, order Pleosporales, was re-assessed. Two new genera are proposed, Alloconiothyrium, to accommodate A. aptrootii sp. nov., and Dendrothyrium for D. longisporum sp. nov. and D. variisporum sp. nov. One new species is described in Paraconiothyrium, viz. Parac. archidendri sp. nov., while two species so far classified in Paraconiothyrium are transferred to Paraphaeosphaeria, viz. Paraph. minitans comb. nov. and Paraph. sporulosa comb. nov. In Paraphaeosphaeria five new species are described based on asexual morphs, viz. Paraph. arecacearum sp. nov., Paraph. neglecta sp. nov., Paraph. sardoa sp. nov., Paraph. verruculosa sp. nov., and Paraph. viridescens sp. nov. Macro- and micromorphological characteristics are fully described.

6.
Stud Mycol ; 75(1): 1-36, 2013 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24014897

RESUMEN

The anamorphic genus Phoma was subdivided into nine sections based on morphological characters, and included teleomorphs in Didymella, Leptosphaeria, Pleospora and Mycosphaerella, suggesting the polyphyly of the genus. Recent molecular, phylogenetic studies led to the conclusion that Phoma should be restricted to Didymellaceae. The present study focuses on the taxonomy of excluded Phoma species, currently classified in Phoma sections Plenodomus, Heterospora and Pilosa. Species of Leptosphaeria and Phoma section Plenodomus are reclassified in Plenodomus, Subplenodomus gen. nov., Leptosphaeria and Paraleptosphaeria gen. nov., based on the phylogeny determined by analysis of sequence data of the large subunit 28S nrDNA (LSU) and Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS). Phoma heteromorphospora, type species of Phoma section Heterospora, and its allied species Phoma dimorphospora, are transferred to the genus Heterospora stat. nov. The Phoma acuta complex (teleomorph Leptosphaeria doliolum), is revised based on a multilocus sequence analysis of the LSU, ITS, small subunit 18S nrDNA (SSU), ß-tubulin (TUB), and chitin synthase 1 (CHS-1) regions. Species of Phoma section Pilosa and allied Ascochyta species were determined to belong to Pleosporaceae based on analysis of actin (ACT) sequence data. Anamorphs that are similar morphologically to Phoma and described in Ascochyta, Asteromella, Coniothyrium, Plectophomella, Pleurophoma and Pyrenochaeta are included in this study. Phoma-like species, which grouped outside the Pleosporineae based on a LSU sequence analysis, are transferred to the genera Aposphaeria, Paraconiothyrium and Westerdykella. The genera Medicopsis gen. nov. and Nigrograna gen. nov. are introduced to accommodate the medically important species formerly known as Pyrenochaeta romeroi and Pyrenochaeta mackinnonii, respectively. TAXONOMIC NOVELTIES: New genera: Medicopsis Gruyter, Verkley & Crous, Nigrograna Gruyter, Verkley & Crous, Paraleptosphaeria Gruyter, Verkley & Crous, Subplenodomus Gruyter, Verkley & Crous. New species: Aposphaeria corallinolutea Gruyter, Aveskamp & Verkley, Paraconiothyrium maculicutis Verkley & Gruyter. New combinations: Coniothyrium carteri (Gruyter & Boerema) Verkley & Gruyter, C. dolichi (Mohanty) Verkley & Gruyter, C. glycines (R.B. Stewart) Verkley & Gruyter, C. multiporum (V.H. Pawar, P.N. Mathur & Thirum.) Verkley & Gruyter, C. telephii (Allesch.) Verkley & Gruyter, Heterospora (Boerema, Gruyter & Noordel.) Gruyter, Verkley & Crous, H. chenopodii (Westend.) Gruyter, Aveskamp & Verkley, H. dimorphospora (Speg.) Gruyter, Aveskamp & Verkley, Leptosphaeria errabunda (Desm.) Gruyter, Aveskamp & Verkley, L. etheridgei (L.J. Hutchison & Y. Hirats.) Gruyter, Aveskamp & Verkley, L. macrocapsa (Trail) Gruyter, Aveskamp & Verkley, L. pedicularis (Fuckel) Gruyter, Aveskamp & Verkley, L. rubefaciens (Togliani) Gruyter, Aveskamp & Verkley, L. sclerotioides (Sacc.) Gruyter, Aveskamp & Verkley, L. sydowii (Boerema, Kesteren & Loer.) Gruyter, Aveskamp & Verkley, L. veronicae (Hollós) Gruyter, Aveskamp & Verkley, Medicopsis romeroi (Borelli) Gruyter, Verkley & Crous, Nigrograna mackinnonii (Borelli) Gruyter, Verkley & Crous, Paraconiothyrium flavescens (Gruyter, Noordel. & Boerema) Verkley & Gruyter, Paracon. fuckelii (Sacc.) Verkley & Gruyter, Paracon. fusco-maculans (Sacc.) Verkley & Gruyter, Paracon. lini (Pass.) Verkley & Gruyter, Paracon. tiliae (F. Rudolphi) Verkley & Gruyter, Paraleptosphaeria dryadis (Johanson) Gruyter, Aveskamp & Verkley, Paralept. macrospora (Thüm.) Gruyter, Aveskamp & Verkley, Paralept. nitschkei (Rehm ex G. Winter) Gruyter, Aveskamp & Verkley, Paralept. orobanches (Schweinitz: Fr.) Gruyter, Aveskamp & Verkley, Paralept. praetermissa (P. Karst.) Gruyter, Aveskamp & Verkley, Plenodomus agnitus (Desm.) Gruyter, Aveskamp & Verkley, Plen. biglobosus (Shoemaker & H. Brun) Gruyter, Aveskamp & Verkley, Plen. chrysanthemi (Zachos, Constantinou & Panag.) Gruyter, Aveskamp & Verkley, Plen. collinsoniae (Dearn. & House) Gruyter, Aveskamp & Verkley, Plen. confertus (Niessl ex Sacc.) Gruyter, Aveskamp & Verkley, Plen. congestus (M.T. Lucas) Gruyter, Aveskamp & Verkley, Plen. enteroleucus (Sacc.) Gruyter, Aveskamp & Verkley, Plen. fallaciosus (Berl.) Gruyter, Aveskamp & Verkley, Plen. hendersoniae (Fuckel) Gruyter, Aveskamp & Verkley, Plen. influorescens (Boerema & Loer.) Gruyter, Aveskamp & Verkley, Plen. libanotidis (Fuckel) Gruyter, Aveskamp & Verkley, Plen. lindquistii (Frezzi) Gruyter, Aveskamp & Verkley, Plen. lupini (Ellis & Everh.) Gruyter, Aveskamp & Verkley, Plen. pimpinellae (Lowen & Sivan.) Gruyter, Aveskamp & Verkley, Plen. tracheiphilus (Petri) Gruyter, Aveskamp & Verkley, Plen. visci (Moesz) Gruyter, Aveskamp & Verkley, Pleospora fallens (Sacc.) Gruyter & Verkley, Pleo. flavigena (Constantinou & Aa) Gruyter & Verkley, Pleo. incompta (Sacc. & Martelli) Gruyter & Verkley, Pyrenochaetopsis pratorum (P.R. Johnst. & Boerema) Gruyter, Aveskamp & Verkley, Subplenodomus apiicola (Kleb.) Gruyter, Aveskamp & Verkley, Subplen. drobnjacensis (Bubák) Gruyter, Aveskamp & Verkley, Subplen. valerianae (Henn.) Gruyter, Aveskamp & Verkley, Subplen. violicola (P. Syd.) Gruyter, Aveskamp & Verkley, Westerdykella capitulum (V.H. Pawar, P.N. Mathur & Thirum.) de Gruyter, Aveskamp & Verkley, W. minutispora (P.N. Mathur ex Gruyter & Noordel.) Gruyter, Aveskamp & Verkley. New names: Pleospora angustis Gruyter & Verkley, Pleospora halimiones Gruyter & Verkley.

7.
Stud Mycol ; 75(1): 37-114, 2013 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24014898

RESUMEN

Pseudocercospora is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. They occur in arid as well as wet environments and in a wide range of climates including cool temperate, sub-tropical and tropical regions. Pseudocercospora is now treated as a genus in its own right, although formerly recognised as either an anamorphic state of Mycosphaerella or having mycosphaerella-like teleomorphs. The aim of this study was to sequence the partial 28S nuclear ribosomal RNA gene of a selected set of isolates to resolve phylogenetic generic limits within the Pseudocercospora complex. From these data, 14 clades are recognised, six of which cluster in Mycosphaerellaceae. Pseudocercospora s. str. represents a distinct clade, sister to Passalora eucalypti, and a clade representing the genera Scolecostigmina, Trochophora and Pallidocercospora gen. nov., taxa formerly accommodated in the Mycosphaerella heimii complex and characterised by smooth, pale brown conidia, as well as the formation of red crystals in agar media. Other clades in Mycosphaerellaceae include Sonderhenia, Microcyclosporella, and Paracercospora. Pseudocercosporella resides in a large clade along with Phloeospora, Miuraea, Cercospora and Septoria. Additional clades represent Dissoconiaceae, Teratosphaeriaceae, Cladosporiaceae, and the genera Xenostigmina, Strelitziana, Cyphellophora and Thedgonia. The genus Phaeomycocentrospora is introduced to accommodate Mycocentrospora cantuariensis, primarily distinguished from Pseudocercospora based on its hyaline hyphae, broad conidiogenous loci and hila. Host specificity was considered for 146 species of Pseudocercospora occurring on 115 host genera from 33 countries. Partial nucleotide sequence data for three gene loci, ITS, EF-1α, and ACT suggest that the majority of these species are host specific. Species identified on the basis of host, symptomatology and general morphology, within the same geographic region, frequently differed phylogenetically, indicating that the application of European and American names to Asian taxa, and vice versa, was often not warranted. TAXONOMIC NOVELTIES: New genera - Pallidocercospora Crous, Phaeomycocentrospora Crous, H.D. Shin & U. Braun; New species - Cercospora eucommiae Crous, U. Braun & H.D. Shin, Microcyclospora quercina Crous & Verkley, Pseudocercospora ampelopsis Crous, U. Braun & H.D. Shin, Pseudocercospora cercidicola Crous, U. Braun & C. Nakash., Pseudocercospora crispans G.C. Hunter & Crous, Pseudocercospora crocea Crous, U. Braun, G.C. Hunter & H.D. Shin, Pseudocercospora haiweiensis Crous & X. Zhou, Pseudocercospora humulicola Crous, U. Braun & H.D. Shin, Pseudocercospora marginalis G.C. Hunter, Crous, U. Braun & H.D. Shin, Pseudocercospora ocimi-basilici Crous, M.E. Palm & U. Braun, Pseudocercospora plectranthi G.C. Hunter, Crous, U. Braun & H.D. Shin, Pseudocercospora proteae Crous, Pseudocercospora pseudostigmina-platani Crous, U. Braun & H.D. Shin, Pseudocercospora pyracanthigena Crous, U. Braun & H.D. Shin, Pseudocercospora ravenalicola G.C. Hunter & Crous, Pseudocercospora rhamnellae G.C. Hunter, H.D. Shin, U. Braun & Crous, Pseudocercospora rhododendri-indici Crous, U. Braun & H.D. Shin, Pseudocercospora tibouchinigena Crous & U. Braun, Pseudocercospora xanthocercidis Crous, U. Braun & A. Wood, Pseudocercosporella koreana Crous, U. Braun & H.D. Shin; New combinations - Pallidocercospora acaciigena (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora crystallina (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora heimii (Crous) Crous, Pallidocercospora heimioides (Crous & M.J. Wingf.) Crous & M.J. Wingf., Pallidocercospora holualoana (Crous, Joanne E. Taylor & M.E. Palm) Crous, Pallidocercospora konae (Crous, Joanne E. Taylor & M.E. Palm) Crous, Pallidoocercospora irregulariramosa (Crous & M.J. Wingf.) Crous & M.J. Wingf., Phaeomycocentrospora cantuariensis (E.S. Salmon & Wormald) Crous, H.D. Shin & U. Braun, Pseudocercospora hakeae (U. Braun & Crous) U. Braun & Crous, Pseudocercospora leucadendri (Cooke) U. Braun & Crous, Pseudocercospora snelliana (Reichert) U. Braun, H.D. Shin, C. Nakash. & Crous, Pseudocercosporella chaenomelis (Y. Suto) C. Nakash., Crous, U. Braun & H.D. Shin; Typifications: Epitypifications - Pseudocercospora angolensis (T. Carvalho & O. Mendes) Crous & U. Braun, Pseudocercospora araliae (Henn.) Deighton, Pseudocercospora cercidis-chinensis H.D. Shin & U. Braun, Pseudocercospora corylopsidis (Togashi & Katsuki) C. Nakash. & Tak. Kobay., Pseudocercospora dovyalidis (Chupp & Doidge) Deighton, Pseudocercospora fukuokaensis (Chupp) X.J. Liu & Y.L. Guo, Pseudocercospora humuli (Hori) Y.L. Guo & X.J. Liu, Pseudocercospora kiggelariae (Syd.) Crous & U. Braun, Pseudocercospora lyoniae (Katsuki & Tak. Kobay.) Deighton, Pseudocercospora lythri H.D. Shin & U. Braun, Pseudocercospora sambucigena U. Braun, Crous & K. Schub., Pseudocercospora stephanandrae (Tak. Kobay. & H. Horie) C. Nakash. & Tak. Kobay., Pseudocercospora viburnigena U. Braun & Crous, Pseudocercosporella chaenomelis (Y. Suto) C. Nakash., Crous, U. Braun & H.D. Shin, Xenostigmina zilleri (A. Funk) Crous; Lectotypification - Pseudocercospora ocimicola (Petr. & Cif.) Deighton; Neotypifications - Pseudocercospora kiggelariae (Syd.) Crous & U. Braun, Pseudocercospora lonicericola (W. Yamam.) Deighton, Pseudocercospora zelkovae (Hori) X.J. Liu & Y.L. Guo.

8.
Stud Mycol ; 75(1): 213-305, 2013 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24014901

RESUMEN

Septoria is a large genus of asexual morphs of Ascomycota causing leaf spot diseases of many cultivated and wild plants. Host specificity has long been a decisive criterium in species delimitation in Septoria, mainly because of the paucity of useful morphological characters and the high level of variation therein. This study aimed at improving the species delimitation of Septoria by adopting a polyphasic approach, including multilocus DNA sequencing and morphological analyses on the natural substrate and in culture. To this end 365 cultures preserved in CBS, Utrecht, The Netherlands, among which many new isolates obtained from fresh field specimens were sequenced. Herbarium material including many types was also studied. Full descriptions of the morphology in planta and in vitro are provided for 57 species. DNA sequences were generated for seven loci, viz. nuclear ITS and (partial) LSU ribosomal RNA genes, RPB2, actin, calmodulin, Btub, and EF. The robust phylogeny inferred showed that the septoria-like fungi are distributed over three main clades, establishing the genera Septoria s. str., Sphaerulina, and Caryophylloseptoria gen. nov. Nine new combinations and one species, Sphaerulina tirolensis sp. nov. were proposed. It is demonstrated that some species have wider host ranges than expected, including hosts from more than one family. Septoria protearum, previously only associated with Proteaceae was found to be also associated with host plants from six additional families of phanerogams and cryptogams. To our knowledge this is the first study to provide DNA-based evidence that multiple family-associations occur for a single species in Septoria. The distribution of host families over the phylogenetic tree showed a highly dispersed pattern for 10 host plant families, providing new insight into the evolution of these fungi. It is concluded that trans-family host jumping is a major force driving the evolution of Septoria and Sphaerulina. TAXONOMIC NOVELTIES: New genus - Caryophylloseptoria Verkley, Quaedvlieg & Crous; New species - Sphaerulina tirolensis Verkley, Quaedvlieg & Crous; New combinations - Caryophylloseptoria lychnidis (Desm.) Verkley, Quaedvlieg & Crous, Caryophylloseptoria silenes (Westend.) Verkley, Quaedvlieg & Crous, Caryophylloseptoria spergulae (Westend.) Verkley, Quaedvlieg & Crous, Sphaerulina aceris (Lib.) Verkley, Quaedvlieg & Crous, Sphaerulina cornicola (DC.: Fr.) Verkley, Quaedvlieg & Crous, Sphaerulina gei (Roberge ex Desm.) Verkley, Quaedvlieg & Crous, Sphaerulina hyperici (Roberge ex Desm.) Verkley, Quaedvlieg & Crous, Sphaerulina frondicola (Fr.) Verkley, Quaedvlieg & Crous, Sphaerulina socia (Pass.) Quaedvlieg, Verkley & Crous; Epitypifications (basionyms) - Ascochyta lysimachiae Lib., Septoria astragali Roberge ex Desm., Septoria cerastii Roberge ex Desm., Septoria clematidis Roberge ex Desm., Septoria cruciatae Roberge ex Desm., Septoria spergulae Westend., Septoria epilobii Westend., Septoria galeopsidis Westend., Septoria gei Roberge ex Desm., Septoria hyperici Roberge ex Desm., Septoria rubi Westend., Septoria senecionis Westend., Septoria urticae Roberge ex Desm.

9.
Stud Mycol ; 75(1): 307-90, 2013 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24014902

RESUMEN

Septoria represents a genus of plant pathogenic fungi with a wide geographic distribution, commonly associated with leaf spots and stem cankers of a broad range of plant hosts. A major aim of this study was to resolve the phylogenetic generic limits of Septoria, Stagonospora, and other related genera such as Sphaerulina, Phaeosphaeria and Phaeoseptoria using sequences of the the partial 28S nuclear ribosomal RNA and RPB2 genes of a large set of isolates. Based on these results Septoria is shown to be a distinct genus in the Mycosphaerellaceae, which has mycosphaerella-like sexual morphs. Several septoria-like species are now accommodated in Sphaerulina, a genus previously linked to this complex. Phaeosphaeria (based on P. oryzae) is shown to be congeneric with Phaeoseptoria (based on P. papayae), which is reduced to synonymy under the former. Depazea nodorum (causal agent of nodorum blotch of cereals) and Septoria avenae (causal agent of avenae blotch of barley and rye) are placed in a new genus, Parastagonospora, which is shown to be distinct from Stagonospora (based on S. paludosa) and Phaeosphaeria. Partial nucleotide sequence data for five gene loci, ITS, LSU, EF-1α, RPB2 and Btub were generated for all of these isolates. A total of 47 clades or genera were resolved, leading to the introduction of 14 new genera, 36 new species, and 19 new combinations. TAXONOMIC NOVELTIES: New genera - Acicuseptoria Quaedvlieg, Verkley & Crous, Cylindroseptoria Quaedvlieg, Verkley & Crous, Kirstenboschia Quaedvlieg, Verkley & Crous, Neoseptoria Quaedvlieg, Verkley & Crous, Neostagonospora Quaedvlieg, Verkley & Crous, Parastagonospora Quaedvlieg, Verkley & Crous, Polyphialoseptoria Quaedvlieg, R.W. Barreto, Verkley & Crous, Ruptoseptoria Quaedvlieg, Verkley & Crous, Septorioides Quaedvlieg, Verkley & Crous, Setoseptoria Quaedvlieg, Verkley & Crous, Stromatoseptoria Quaedvlieg, Verkley & Crous, Vrystaatia Quaedvlieg, W.J. Swart, Verkley & Crous, Xenobotryosphaeria Quaedvlieg, Verkley & Crous, Xenoseptoria Quaedvlieg, H.D. Shin, Verkley & Crous. New species - Acicuseptoria rumicis Quaedvlieg, Verkley & Crous, Caryophylloseptoria pseudolychnidis Quaedvlieg, H.D. Shin, Verkley & Crous, Coniothyrium sidae Quaedvlieg, Verkley, R.W. Barreto & Crous, Corynespora leucadendri Quaedvlieg, Verkley & Crous, Cylindroseptoria ceratoniae Quaedvlieg, Verkley & Crous, Cylindroseptoria pistaciae Quaedvlieg, Verkley & Crous, Kirstenboschia diospyri Quaedvlieg, Verkley & Crous, Neoseptoria caricis Quaedvlieg, Verkley & Crous, Neostagonospora caricis Quaedvlieg, Verkley & Crous, Neostagonospora elegiae Quaedvlieg, Verkley & Crous, Paraphoma dioscoreae Quaedvlieg, H.D. Shin, Verkley & Crous, Parastagonospora caricis Quaedvlieg, Verkley & Crous, Parastagonospora poae Quaedvlieg, Verkley & Crous, Phlyctema vincetoxici Quaedvlieg, Verkley & Crous, Polyphialoseptoria tabebuiae-serratifoliae Quaedvlieg, Alfenas & Crous, Polyphialoseptoria terminaliae Quaedvlieg, R.W. Barreto, Verkley & Crous, Pseudoseptoria collariana Quaedvlieg, Verkley & Crous, Pseudoseptoria obscura Quaedvlieg, Verkley & Crous, Sclerostagonospora phragmiticola Quaedvlieg, Verkley & Crous, Septoria cretae Quaedvlieg, Verkley & Crous, Septoria glycinicola Quaedvlieg, H.D. Shin, Verkley & Crous, Septoria oenanthicola Quaedvlieg, H.D. Shin, Verkley & Crous, Septoria pseudonapelli Quaedvlieg, H.D. Shin, Verkley & Crous, Setophoma chromolaenae Quaedvlieg, Verkley, R.W. Barreto & Crous, Setoseptoria phragmitis Quaedvlieg, Verkley & Crous, Sphaerulina amelanchier Quaedvlieg, Verkley & Crous, Sphaerulina pseudovirgaureae Quaedvlieg, Verkley & Crous, Sphaerulina viciae Quaedvlieg, H.D. Shin, Verkley & Crous, Stagonospora duoseptata Quaedvlieg, Verkley & Crous, Stagonospora perfecta Quaedvlieg, Verkley & Crous, Stagonospora pseudocaricis Quaedvlieg, Verkley, Gardiennet & Crous, Stagonospora pseudovitensis Quaedvlieg, Verkley & Crous, Stagonospora uniseptata Quaedvlieg, Verkley & Crous, Vrystaatia aloeicola Quaedvlieg, Verkley, W.J. Swart & Crous, Xenobotryosphaeria calamagrostidis Quaedvlieg, Verkley & Crous, Xenoseptoria neosaccardoi Quaedvlieg, H.D. Shin, Verkley & Crous. New combinations - Parastagonospora avenae (A.B. Frank) Quaedvlieg, Verkley & Crous, Parastagonospora nodorum (Berk.) Quaedvlieg, Verkley & Crous, Phaeosphaeria papayae (Speg.) Quaedvlieg, Verkley & Crous, Pseudocercospora domingensis (Petr. & Cif.) Quaedvlieg, Verkley & Crous, Ruptoseptoria unedonis (Roberge ex Desm.) Quaedvlieg, Verkley & Crous, Septorioides pini-thunbergii (S. Kaneko) Quaedvlieg, Verkley & Crous, Sphaerulina abeliceae (Hiray.) Quaedvlieg, Verkley & Crous, Sphaerulina azaleae (Voglino) Quaedvlieg, Verkley & Crous, Sphaerulina berberidis (Niessl) Quaedvlieg, Verkley & Crous, Sphaerulina betulae (Pass.) Quaedvlieg, Verkley & Crous, Sphaerulina cercidis (Fr.) Quaedvlieg, Verkley & Crous, Sphaerulina menispermi (Thüm.) Quaedvlieg, Verkley & Crous, Sphaerulina musiva (Peck) Quaedvlieg, Verkley & Crous, Sphaerulina oxyacanthae (Kunze & J.C. Schmidt) Quaedvlieg, Verkley & Crous, Sphaerulina patriniae (Miura) Quaedvlieg, Verkley & Crous, Sphaerulina populicola (Peck) Quaedvlieg, Verkley & Crous, Sphaerulina quercicola (Desm.) Quaedvlieg, Verkley & Crous, Sphaerulina rhabdoclinis (Butin) Quaedvlieg, Verkley & Crous, Stromatoseptoria castaneicola (Desm.) Quaedvlieg, Verkley & Crous. Typifications: Epitypifications - Phaeosphaeria oryzae I. Miyake, Phaeoseptoria papayae Speg.; Neotypification - Hendersonia paludosa Sacc. & Speg.

10.
Persoonia ; 28: 126-37, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23105158

RESUMEN

The genus The genus Dinemasporium is used as a case study to evaluate the importance of conidial appendages for generic level classification of coelomycetous fungi. Based on morphology and sequence data of the large subunit nuclear ribosomal RNA gene (LSU, 28S) and the internal transcribed spacers and 5.8S rRNA gene of the nrDNA operon, the genus Dinemasporium is circumscribed, and an epitype designated for D. strigosum, the type of the genus. A further five species are introduced in Dinemasporium, namely D. pseudostrigosum (isolated from Triticum aestivum, Germany and Stigmaphyllon sagraeanum, Cuba), D. americana (soil, USA), D. polygonum (Polygonum sachalinense, Netherlands), D. pseudoindicum (soil, USA), and D. morbidum (human sputum, Netherlands and hare dung, New Zealand). Brunneodinemasporium, based on B. brasiliense, is introduced to accommodate Dinemasporium-like species with tightly aggregated brown conidiogenous cells, and pale brown conidia. Dendrophoma (= Amphitiarospora) is reinstated as distinct from Dinemasporium, and an epitype designated for D. cytisporoides, characterised by its superficial, stipitate to cupulate conidiomata, and small conidia with two polar, tubular, exogenous appendages. The genus Stauronema is reduced to synonymy under Dinemasporium. Pseudolachnea (1-septate conidia) is supported as distinct from Dinemasporium (aseptate conidia), and P. fraxini introduced as a novel species. Taxa in this generic complex differ by combination of morphological characters of conidiomata, setae, conidia and appendages. Appendage morphology alone is rejected as informative at the generic level.

11.
Persoonia ; 26: 57-69, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22025804

RESUMEN

The Mycosphaerella complex is both poly- and paraphyletic, containing several different families and genera. The genus Mycosphaerella is restricted to species with Ramularia anamorphs, while Septoria is restricted to taxa that cluster with the type species of Septoria, S. cytisi, being closely related to Cercospora in the Mycosphaerellaceae. Species that occur on graminicolous hosts represent an as yet undescribed genus, for which the name Zymoseptoria is proposed. Based on the 28S nrDNA phylogeny derived in this study, Zymoseptoria is shown to cluster apart from Septoria. Morphologically species of Zymoseptoria can also be distinguished by their yeast-like growth in culture, and the formation of different conidial types that are absent in Septoria s.str. Other than the well-known pathogens such as Z. tritici, the causal agent of septoria tritici blotch on wheat, and Z. passerinii, the causal agent of septoria speckled leaf blotch of barley, both for which epitypes are designated, two leaf blotch pathogens are also described on graminicolous hosts from Iran. Zymoseptoria brevis sp. nov. is described from Phalaris minor, and Z. halophila comb. nov. from leaves of Hordeum glaucum. Further collections are now required to elucidate the relative importance, host range and distribution of these species.

12.
Persoonia ; 27: 130-62, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22403481

RESUMEN

Novel species of microfungi described in the present study include the following from Australia: Diaporthe ceratozamiae on Ceratozamia robusta, Seiridium banksiae on Banksia marginata, Phyllosticta hymenocallidicola on Hymenocallis littoralis, Phlogicylindrium uniforme on Eucalyptus cypellocarpa, Exosporium livistonae on Livistona benthamii and Coleophoma eucalyptorum on Eucalyptus piperita. Several species are also described from South Africa, namely: Phoma proteae, Pyrenochaeta protearum and Leptosphaeria proteicola on Protea spp., Phaeomoniella niveniae on Nivenia stokoei, Toxicocladosporium leucadendri on Leucadendron sp. and Scorias leucadendri on Leucadendron muirii. Other species include Myrmecridium phragmitis on Phragmites australis (Netherlands) and Camarographium carpini on Carpinus betulus (Russia). Furthermore, Pseudoidriella syzygii on Syzygium sp. represents a novel genus of hyphomycetes collected in Australia. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

13.
Plant Dis ; 95(10): 1313, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30731670

RESUMEN

Rambutan (Nephelium lappaceum L.) is a tropical fruit tree that has increased in importance for fruit growers in Puerto Rico. In 2008 and 2009, fruit rot and lesions on leaves and inflorescences were observed. A total of 276 diseased samples were collected from commercial orchards, orchards at the University of Puerto Rico, and the USDA-ARS in Mayaguez. Plant tissue was disinfested and plated on acidified potato dextrose agar (APDA). Besides other typical fungi associated with these tissue samples (2,3), 130 unknown isolates were identified as a Lasmenia sp. at the Fungal Biodiversity Centre (CBS), the Netherlands and the University of Puerto Rico using taxonomic keys (1,4). Sequencing of the rDNA with primers ITS 1 and ITS 4 and Lr5 and LR0R corresponding to the (internal transcribed spacer) ITS1-5.8S-ITS2 region and the partial region of the large ribosomal subunit (LSU), respectively, was completed. Five isolates (CBS 124122 to 124126) were deposited at the CBS. In APDA, colonies of a Lasmenia sp. were cream-colored with dark brown concentric rings and immersed, hyaline, branched, and septate mycelium. Acervuli were produced on APDA and plant tissue that was sampled from field and clean tissue that was inoculated with a Lasmenia sp. Conidia were 10 to 12 × 4 to 5 µm, light brown, thick walled, obclavate, aseptate, and the apex was obtuse with a scar at the base. Conidiophores were hyaline, septate, cylindrical, and sparingly branched. The conidiogenous cells were hyaline, cylindrical, and holoblastic. Pathogenicity tests were done on 12 healthy, superficially sterilized fruits under laboratory conditions, on four random leaves in each of six 6-month-old rambutan seedlings under greenhouse conditions, and on four flowers in six random inflorescences for each of six mature trees from an orchard. Tests were repeated. Either wounded or unwounded tissues were inoculated with a conidial suspension (2 to 4.5 × 106 conidia/ml) and 5-mm mycelial disks from each fungal isolate grown in APDA. After 5 days, a Lasmenia sp. produced necrotic spots on leaves, rachis necrosis and flower abortion, fruit rot, and water-soaked lesions on the fruit surface that spread to cause an aril (flesh) rot. Acervuli were produced on fruit spintems (hair-like appendages). Koch's postulates were fulfilled by reisolation of inoculated fungi from diseased tissue. A complete sequence for the ITS region for four isolates of a Lasmenia sp. was submitted to NCBI GenBank (Accession Nos. GU797405, GU797406, GU797407, and JF838336). Complete sequences of the LSU region for all five isolates were submitted to GenBank (Accession Nos. JF838337, JF838338, JF838339, JF838340, and JF838341). For both types of sequences, the identity was 100% between isolates. Although there is no DNA sequence data for the genus Lasmenia, a BLASTN search indicates a closer affinity to the Cryphonectriaceae (Diaporthales) (1). A Lasmenia sp. has been reported from Hawaii as causing fruit rot in rambutan (2). To our knowledge, this is the first report of a Lasmenia sp. causing rachis necrosis and flower abortion worldwide, and the first report of fruit rot and necrotic spots on leaves of rambutan in Puerto Rico. References: (1) M. N. Kamat et al. Rev. Mycol. 38:19, 1973. (2) K. A. Nishijima and P. A. Follett. Plant Dis. 86:71, 2002. (3) L. M. Serrato et al. Phytopathology (Abstr.) 100(suppl):S176, 2010. (4) B. C. Sutton. The Coelomycetes: Fungi Imperfecti with Pycnidia Acervuli and Stromata. CMI. Kew, Surrey, England, 1980.

14.
Stud Mycol ; 65: 1-60, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20502538

RESUMEN

Fungal taxonomists routinely encounter problems when dealing with asexual fungal species due to poly- and paraphyletic generic phylogenies, and unclear species boundaries. These problems are aptly illustrated in the genus Phoma. This phytopathologically significant fungal genus is currently subdivided into nine sections which are mainly based on a single or just a few morphological characters. However, this subdivision is ambiguous as several of the section-specific characters can occur within a single species. In addition, many teleomorph genera have been linked to Phoma, three of which are recognised here. In this study it is attempted to delineate generic boundaries, and to come to a generic circumscription which is more correct from an evolutionary point of view by means of multilocus sequence typing. Therefore, multiple analyses were conducted utilising sequences obtained from 28S nrDNA (Large Subunit - LSU), 18S nrDNA (Small Subunit - SSU), the Internal Transcribed Spacer regions 1 & 2 and 5.8S nrDNA (ITS), and part of the beta-tubulin (TUB) gene region. A total of 324 strains were included in the analyses of which most belonged to Phoma taxa, whilst 54 to related pleosporalean fungi. In total, 206 taxa were investigated, of which 159 are known to have affinities to Phoma. The phylogenetic analysis revealed that the current Boeremaean subdivision is incorrect from an evolutionary point of view, revealing the genus to be highly polyphyletic. Phoma species are retrieved in six distinct clades within the Pleosporales, and appear to reside in different families. The majority of the species, however, including the generic type, clustered in a recently established family, Didymellaceae. In the second part of this study, the phylogenetic variation of the species and varieties in this clade was further assessed. Next to the genus Didymella, which is considered to be the sole teleomorph of Phoma s. str., we also retrieved taxa belonging to the teleomorph genera Leptosphaerulina and Macroventuria in this clade. Based on the sequence data obtained, the Didymellaceae segregate into at least 18 distinct clusters, of which many can be associated with several specific taxonomic characters. Four of these clusters were defined well enough by means of phylogeny and morphology, so that the associated taxa could be transferred to separate genera. Aditionally, this study addresses the taxonomic description of eight species and two varieties that are novel to science, and the recombination of 61 additional taxa.

15.
Persoonia ; 20: 9-17, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20467483

RESUMEN

Coniothyrium-like fungi are common wood and soil inhabitants and hyperparasites on other fungi. They belong to different fungal genera within the Pleosporales. Several isolates were obtained on wood of different Prunus species (plum, peach and nectarine) from South Africa, on Actinidia species from Italy and on Laurus nobilis from Turkey. Morphological and cultural characteristics as well as DNA sequence data (5.8S nrDNA, ITS1, ITS2, partial SSU nrDNA) were used to characterise them. The isolates belonged to three species of the recently established genus Paraconiothyrium. This is the first report of Paraconiothyrium brasiliense on Prunus spp. from South Africa. Two new species are described, namely Paraconiothyrium variabile sp. nov. on Prunus persica and Prunus salicina from South Africa, on Actinidia spp. from Italy and on Laurus nobilis from Turkey, and Paraconiothyrium africanum sp. nov. on Prunus persica from South Africa. Although other known species of Paraconiothyrium commonly produce aseptate conidia, those of P. africanum and P. hawaiiense comb. nov. are predominantly two-celled.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...